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Abstract
Estimating entropies from limited data series is known to be a non-trivial task.
Naı̈ve estimations are plagued with both systematic (bias) and statistical errors.
Here, we present a new ‘balanced estimator’ for entropy functionals (Shannon,
Rényi and Tsallis) specially devised to provide a compromise between low
bias and small statistical errors, for short data series. This new estimator
outperforms other currently available ones when the data sets are small and
the probabilities of the possible outputs of the random variable are not close
to zero. Otherwise, other well-known estimators remain a better choice. The
potential range of applicability of this estimator is quite broad specially for
biological and digital data series.

PACS numbers: 89.75.Hc, 05.45.Xt, 87.18.Sn

1. Introduction

In statistical mechanics and information theory, entropy is a functional that measures the
information content of a statistical ensemble or equivalently the uncertainty of a random
variable. Its applications in physics, biology, computer science, linguistics, etc are countless.
For example, it has become a key tool in data mining tasks arising from high-throughput
biological analyses.

Historically, the most important example of such a functional is the Shannon (or
information) entropy [1, 2]. For a discrete random variable x, which can take a finite number,
M, of possible values xi ∈ {x1, . . . , xM} with corresponding probabilities pi ∈ {p1, . . . , pM},
this entropy is defined by

HS = −
M∑
i=1

pi ln(pi). (1)
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Recently, various generalizations, inspired by the study of q-deformed algebras and special
functions, have been investigated, most notably the Rényi entropy [3]

HR(q) = 1

1 − q
ln

(
M∑
i=1

p
q

i

)
, (2)

with p � 0, which, in particular, reduces to the Shannon entropy in the limit q → 1. Also,
the Tsallis entropy [4]

HT (q) = 1

q − 1

(
1 −

M∑
i=1

p
q

i

)
, (3)

although controversial, has generated a large burst of research activity.
In general, the full probability distribution for a given stochastic problem is not known

and, in particular, in many situations only small data sets from which to infer entropies are
available. For example, it could be of interest to determine the Shannon entropy of a given
DNA sequence. In such a case, one could estimate the probability of each element i to occur, pi ,
by making some assumption on the probability distribution, as for example (i) parametrizing
it [5], (ii) dropping the most unlikely values [6] or (iii) assuming some a priori shape for the
probability distribution [7, 8]. However, the easiest and most objective way to estimate them
is just by counting how often the value xi appears in the data set [9–15]. Denoting this number
by ni and dividing by the total size of the data set one obtains the relative frequency

p̂i = ni

N
(4)

which naı̈vely approximates the probability pi . Obviously, the entropy of the data set can be
approximated by simply replacing the probabilities pi by p̂i in the entropy functional. For
example, the Shannon entropy can be estimated by

HS ≈ Ĥ naive
S = −

M∑
i=1

p̂i ln (p̂i) = −
M∑
i=1

ni

N
ln

(ni

N

)
. (5)

The quantity Ĥ naive
S is an example of an estimator of the entropy, in a very similar sense

as p̂i is an estimator of pi . However, there is an important difference stemming from the
nonlinear nature of the entropy functional. The frequencies p̂i are unbiased estimators of
the probabilities, i.e., their expectation value 〈p̂i〉 (where 〈·〉 stands for ensemble averages)
coincides with the true value of the estimated quantity

〈p̂i〉 = 〈ni〉
N

= pi. (6)

In other words, the frequencies p̂i approximate the probabilities pi with certain statistical error
(variance) but without any systematic error (bias). Contrarily, naı̈ve entropy estimators, such
as Ĥ naive

S , in which pi are simply replaced by ni/N are always biased, i.e. they deviate from
the true value of the entropy not only statistically but also systematically. Actually, defining
an error variable εi = (p̂i − pi)/pi , and replacing pi in equation (1) by its value in terms of
εi and p̂i , it is straightforward to verify that the bias, up to leading order, is −M−1

2N
, which is

a significant error for small N and vanishes only as N → ∞ [12]. A similar bias, owing in
general to the nonlinearity of the entropy functional, appears also for the Rényi and Tsallis
entropies.

Therefore, the question arises whether it is possible to find improved estimators which
reduce either the bias or the variance of the estimate. More generally, the problem can be

2
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formulated as follows. Given an arbitrary entropy functional of the form

H = F

[
M∑
i=1

h(pi)

]
(7)

(where F is a generic function) we want to find an estimator

Ĥ = F

[
M∑
i=1

χni

]
(8)

such that the bias

� = 〈Ĥ 〉 − H (9)

or the mean-squared deviation (the statistical error)

σ 2 = 〈(Ĥ − 〈Ĥ 〉)2〉 (10)

or a combination of both are as small as possible. At the very end of such a calculation the
estimator is defined by N + 1 real numbers χni

,3 which depend on the sample size N. For
example, the naı̈ve estimator for the Shannon entropy would be given in terms of

χnaive
ni

= −ni

N
ln

(ni

N

)
. (11)

The search for improved estimators has a long history. To the best of our knowledge, the first
to address this question was Miller in 1955 [13], who suggested a correction to reduce the bias
of the estimate of Shannon entropy, given by

χMiller
ni

= −ni

N
ln

(ni

N

)
+

1

2N
. (12)

The correction exactly compensates the leading order of the bias, as reported above. In this
case the remaining bias vanishes as 1/N2 as N → ∞. This result was improved by Harris in
1975 [14], who calculated the next-leading order correction. However, his estimator depends
explicitly on the (unknown) probabilities pi , so that its practical importance is limited.

In another pioneering paper, Grassberger, elaborating upon previous work by Herzel [15],
proposed an estimator which provides further improvement and gives a very good compromise
between bias and statistical error [9]. For the Shannon entropy his estimator is given by

χGrassberger
ni

= ni

N

(
ln N − ψ(ni) − (−1)ni

ni(ni + 1)

)
, (13)

where ψ(x) is the derivative of the logarithm of the Gamma function, valid for all i with
ni > 0. According to [9], the function ψ(x) can be approximated by

ψ(ni) ≈ ln x − 1

2x
(14)

for large x, giving

χGrassberger
ni

≈ −ni

N
ln

(ni

N

)
+

1

2N
− (−1)ni

N(ni + 1)
. (15)

This method can be generalized to q-deformed entropies.
More recently, a further improvement for the Shannon case has been suggested by

Grassberger [10]

χGS
ni

= ni

N

[
ψ(N) − ψ(ni) − (−1)ni

∫ 1

0

tni−1

1 + t
dt

]
. (16)

3 This is so because the estimator χni
depends only on ni , which can take N + 1 possible values.
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This estimator can be recast (see equations (28), (29), (35) of [10]) as

χGS
ni

= ni

N
(ln N − Gni

), (17)

where Gn satisfy the recurrence relation

G1 = −γ − ln 2 (18)

G2 = 2 − γ − ln 2 (19)

G2n+1 = G2n (20)

G2n+2 = G2n + 2/(2n + 1) (21)

with γ = −ψ(1). This estimator constitutes the state of the art for Shannon entropies, but
unfortunately, it cannot be straightforwardly extended to more general q-deformed entropy
functionals, for which [9] remains the best available option. These results were further
generalized by Schürmann [11] with different balances between statistical and systematic
errors.

It should be emphasized that an ideal estimator does not exist, instead the choice of
the estimator depends on the structure of data to be analyzed [16]. For example, the above
discussed estimators [9, 10] work satisfactorily if the probabilities pi are sufficiently small.
This is the case in many applications of statistical physics, where the number of possible states,
M, in an ensemble is usually extremely large so that the probability pi for an individual state i
is very small. On the other hand, this assumption does not always hold for empirical data sets
such as digital data streams and DNA sequences.

The performance of the estimators worsens as the values of pi get larger. This is due to
the following reason: the numbers ni , which count how often the value xi appears in the data
set, are generically distributed as binomials, i.e. the probability Pni

to find the value ni is given
by

Pni
(pi) =

(
N

ni

)
p

ni

i (1 − pi)
N−ni , (22)

where
(
N

ni

) = N!
ni !(N−ni )!

are binomial coefficients. For pi � 1 this can be approximated by a
Poisson distribution, which is the basis for the derivation of equation (13). For large values
pi , however, this assumption is no longer justified and this results in large fluctuations (even
if the bias remains small).

It is important to note that it is not possible to design an estimator that minimizes both the
bias and the variance to arbitrarily small values. The existing studies have shown that there
is always a delicate tradeoff between the two types of errors. For example, minimizing the
bias usually comes at the expense of the variance, which increases significantly. Moreover, it
can be proved that neither the variance nor the bias can be reduced to zero for finite N [17].
Therefore, it is necessary to study estimators with different balances between systematic and
statistical errors, as it was done, e.g. in the work by Schürmann [11].

In the present work we introduce two estimators, which can be used to measure any of
the entropy functionals discussed above. Both of them are specifically designed for short data
series where the probabilities pi take (in general) non-small values. The first one reduces the
bias as much as possible at the expense of the variance, and is mostly of academic interest
and discussed only for illustration purposes. The second one seeks for a robust compromise
between minimizing bias and variance together, is very easy to implement numerically, and
has a broad potential range of applicability. The estimator itself can be improved by adapting
various of its elements to each specific problem.
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2. The low-bias estimator

The starting point is the observation that the entropy H and its estimators Ĥ in equations (7)
and (8) involve sums over all possible values of the data set. Therefore, as the bias can
be minimized by minimizing the errors of each summand, the problem can be reduced to
minimize

δ(pi) = 〈
χni

〉 − h(pi) =
⎛
⎝ N∑

ni=0

Pni
(pi)χni

⎞
⎠ − h(pi) (23)

over a broad range of pi as much as possible.
A theorem by Paninski [17] states that it is impossible to reduce the bias to zero for all

pi ∈ [0, 1] since an estimator is always a finite polynomial in pi while the true entropy is
usually not a polynomial. However, it is possible to let the bias vanish at N + 1 points pi in
the interval [0, 1] because the determination of the different χni

requires N + 1 independent
equations.

For the sake of illustration, let us choose here equidistant points pj = j/N , with
j = 0, 1, . . . , N . In general, other choices, more appropriate to each specific case, should be
employed. The resulting set of linear equations reads

δ(j/N) = 0 �⇒
N∑

ni=0

Pni
(j/N)χni

= h(j/N), j = 0, 1, . . . , N. (24)

Introducing the notation hj = h(j/N) and Pj,ni
= Pni

(j/N) this last expression takes
the form

N∑
ni=0

Pj,ni
χni

= hj , j = 0, 1, . . . , N (25)

or, in short, P−→χ = −→
h , where P is the so-called multinomial matrix [18]. To find the solution−→χ = P−1−→h , the matrix

Pj,ni
=

(
N

ni

)
p

ni

j (1 − pj )
N−ni =

(
N

ni

) (
j

N

)ni
(

1 − j

N

)N−ni

, (26)

whose elements are binomial distributions, has to be inverted. For small N this inversion is
most easily done numerically. However, we were also able to invert the matrix analytically,
leading us to the closed form [19]

P̂ −1
i,j =

N∑
k=0

N∑
l=0

(
i

k

)(
l

j

)
Nkk!(N − k)!

N !

(−1)l+j

l!
s(l, k), (27)

where s(l, k) denotes the Stirling numbers of the first kind [20]. Having inverted the matrix,
the numbers χni

determining the estimators can be computed for any given entropy functional
by a simple matrix multiplication.

Figure 1 illustrates a comparison for the Shannon case between the low-bias estimator and
other well-known ones for the simple example of a binary sequence of N = 20 bits x = 0, 1
(i.e. M = 2), where the value 1 appears with probability p and 0 with probability 1 − p. The
bias of the low-bias estimator vanishes exactly only at values of p multiples of 1/20, and takes
small values in between (see inset of figure 1). On the other hand, the fluctuations for both the
naı̈ve estimator and the one in [10] remain bounded, while they diverge for the low-bias case
(figure 1 ). This unbounded growing of statistical fluctuations makes the low-bias estimator
useless for practical purposes.
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Figure 1. Fluctuations, σ 2, as defined by equation (10), for three different Shannon entropy
estimates (the naı̈ve one, the improved estimator introduced in [10] and the low-bias estimator
defined in this paper) for a binary sequence (M = 2) of length N = 20. Inset: bias, �, as defined
by equation (9), for the low-bias estimator showing the N+1 vanishing points with amplitude
oscillations.

3. A balanced estimator

Aiming at solving the previously illustrated problem with uncontrolled statistical fluctuations,
in this section we introduce a new balanced estimator designed to minimize simultaneously
both the bias and the variance over a wide range of probabilities. This is of relevance for
analyzing small data sets where statistical fluctuations are typically large and a compromise
with minimizing the bias is required.

As before, ignoring correlations between the ni both bias and statistical errors can be
optimized by minimizing the errors of the summands in their corresponding expressions.
Therefore, the problem can be reduced to minimize the bias for each state

δ(pi) = 〈
χni

〉 − h(pi) (28)

and the variance within such a state

σ 2(pi) = 〈(
χni

− 〈
χni

〉)2〉
(29)

over a broad range of pi ∈ [0, 1], where ni ∈ 0, 1, . . . , N is binomially distributed. Since we
are interested in a balanced compromise error, it is natural to minimize the squared sum

�2(pi) = δ2(pi) + σ 2(pi). (30)

This quantity measures the total error for a particular value of pi . Therefore, the average error
over the whole range of pi ∈ [0, 1] is given by

�2
i =

∫ 1

0
dpiw(pi)�

2(pi), (31)

where w(pi) is a suitable weight function that should be determined for each specific problem.
We discuss explicitly here the simplest case w(pi) ≡ 1 (obviously, any extra knowledge of

the probability values should lead to a non-trivial distribution of weights, resulting in improved
results). Inserting equations (28) and (29) into equation (31), the average error is given by

�2
i =

∫ 1

0
dpi

⎡
⎣

⎛
⎝ N∑

ni=0

Pni
(pi)χ

2
ni

⎞
⎠ + h2(pi) − 2h(pi)

⎛
⎝ N∑

ni=0

Pni
(pi)χni

⎞
⎠

⎤
⎦ . (32)

6
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Now, we want to determine the numbers χni
in such a way that the error given by

equation (32) is minimized. Before proceeding, let us make it clear that instead of minimizing
the mean-square error for each of the possible states (i = 1, . . . ,M) one could also minimize
the total mean-square error defined using equation (9) and (10) rather than equation (28) and
(29) to take into account correlations between boxes which, in general, will improve the final
result. For example, for binary sequences this can be easily done, and leads to the same result
as reported on what follows [19].

As a necessary condition, the partial derivatives

∂

∂χni

�2
i = 0 (33)

have to vanish, i.e.

2
∫ 1

0
dpiPni

(pi)[χni
− h(pi)] = 0 (34)

for all ni = 0, 1, . . . , N . Therefore, the balanced estimator is defined by the numbers

χbal
ni

=
∫ 1

0 dpiPni
(pi)h(pi)∫ 1

0 dpiPni
(pi)

= (N + 1)

∫ 1

0
dpiPni

(pi)h(pi), (35)

where we have explicitly integrated over pi the binomial distribution.
In the Shannon case, where h(pi) = −pi ln(pi), the integration can be explicitly carried

out, leading to4

χni
= ni + 1

N + 2

N+2∑
j=ni+2

1

j
(36)

so that the final result for the balanced estimator of Shannon entropy is given by

Ĥ bal
S = 1

N + 2

M∑
i=1

⎡
⎣(ni + 1)

N+2∑
j=ni+2

1

j

⎤
⎦ . (37)

Similarly, it is possible to compute χni for a power h(pi) = p
q

i , which is the basis for all
q-deformed entropies

χni
(q) = 
(N + 2)
(ni + 1 + q)


(N + 2 + q)
(ni + 1)
. (38)

The balanced estimators for Rényi5 and Tsallis entropy are then given respectively by

Ĥ bal
R (q) = 1

1 − q
ln

[
M∑
i=1

χni
(q)

]
, (39)

and

Ĥ bal
T (q) = 1

q − 1

[
1 −

M∑
i=1

χni
(q)

]
. (40)

To illustrate the performance of these estimators, let us consider again a binary sequence
of N bits x = 0, 1 (i.e. M = 2) occurring with probabilities 1 − p and p, respectively. In
figure 2 we plot the mean-squared deviation �2 = 〈(Ĥ − H)2〉 of various estimators from the

4 The calculation requires using the definition of Harmonic numbers of first-order and binomial coefficients.
5 Here the influence of the nonlinearity of the logarithm on statistical averages is neglected.
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Figure 2. Mean-squared error �2 = 〈(Ĥ − H)2〉 of different entropy estimators (upper row:
Shannon (left); Rényi with q = 1.5 (right); lower row: Tsallis with q = 1.5) for a binary sequence
of N = 20, as a function of p. The set of possible values is {x1 = 1, x2 = 0} and the probabilities,
{p1 = p, p2 = 1 − p}, respectively.

true value of the Shannon as well as the Rényi entropy as a function of p. For such a short bit
sequence, the performance of Grassberger’s estimator using the parameter �2, is even worse
than the naı̈ve one. This is not surprising since Grassberger’s estimator is designed for small
probabilities pi � 1, while in the present example one of the probabilities p or 1−p is always
large and thus the estimator is affected by large fluctuations. The balanced estimator, however,
reduces the mean-squared error considerably over an extended range of p while for small p
and 0.4 < p < 0.6 it fails. Similar plots can be obtained for the Tsallis entropy.

The advantage of the balanced estimator compared to standard ones decreases with
increasing N. One of the reasons is the circumstance that the fluctuations of the estimator are
basically determined by the randomness of ni and, therefore, are difficult to reduce.

4. Conclusions

We have designed a new ‘balanced estimator’ for different entropy functionals (Shannon, Rényi
and Tsallis) specially adequate for the analysis of small data sets where the possible states
appear with not-too-small probabilities. To construct it, first we have illustrated a known result
establishing that systematic errors (bias) and statistical errors cannot both be simultaneously
reduced to arbitrarily small values when constructing an estimator for a limited data set. In
particular, we have designed a low-bias estimator and highlighted that it leads to uncontrolled
statistical fluctuations. This hinders the practical usefulness of such a low-bias estimator.
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On the other hand, we have designed a new estimator that constitutes a good compromise
between minimizing the bias and keeping controlled statistical fluctuations. We have illustrated
how this balanced estimator outperforms (in reducing simultaneously bias and fluctuations)
previously available ones in special situations the data sets are sufficiently small and the
probabilities are not too small. Obviously situations such as in figure 2 are the ‘worst case’ for
estimators like (13) and (16) which were designed to be efficient for large M. If any of these
conditions is not fulfilled Grassberger’s and Schürmann’s estimator remains the best choice.

The balanced method fills a gap in the list of existing entropy estimators, is easy to
implement for Shannon, Rényi and Tsallis entropy functional and therefore its potential range
applicability is very large, specially in analyses of short biological (DNA, genes, etc) data
series.

The balanced estimator proposed here is simple but by no means ‘optimal’ for two reasons.
First, we made no effort to optimize the location of the mesh points pj , which for simplicity
are assumed to be equidistant. Moreover, we did not optimize the weights w(pj ) toward a
Bayesian estimate, as e.g. attempted by Wolpert and Wolf [8]. Further effort in this direction
would be desirable.
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